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Abstract—Although neural supersampling has achieved great success in various applications for improving image quality, it is still
difficult to apply it to a wide range of real-time rendering applications due to the high computational power demand. Most existing
methods are computationally expensive and require high-performance hardware, preventing their use on platforms with limited
hardware, such as smartphones. To this end, we propose a new supersampling framework for real-time rendering applications to
reconstruct a high-quality image out of a low-resolution one, which is sufficiently lightweight to run on smartphones within a real-time
budget. Our model takes as input the renderer-generated low resolution content and produces high resolution and anti-aliased results.
To maximize sampling efficiency, we propose using an alternate sub-pixel sample pattern during the rasterization process. This allows
us to create a relatively small reconstruction model while maintaining high image quality. By accumulating new samples into a
high-resolution history buffer, an efficient history check and re-usage scheme is introduced to improve temporal stability. To our
knowledge, this is the first research in pushing real-time neural supersampling on mobile devices. Due to the absence of training data,
we present a new dataset containing 57 training and test sequences from three game scenes. Furthermore, based on the rendered
motion vectors and a visual perception study, we introduce a new metric called inter-frame structural similarity (IF-SSIM) to
quantitatively measure the temporal stability of rendered videos. Extensive evaluations demonstrate that our supersampling model
outperforms existing or alternative solutions in both performance and temporal stability.

Index Terms—Neural supersampling, deep learning, real-time rendering

✦

1 INTRODUCTION

THe required amounts of computational resources for
real-time rendering have been growing significantly to

meet the demands of higher resolution, higher refresh rate,
and modern rendering techniques such as real-time ray
tracing and various global illumination techniques. In par-
ticular, the popularization of smartphone screens with 1080P
or 2K resolution and 90 Hz refresh rate poses a challenge for
mobile real-time rendering which is often limited by hard-
ware capability and battery power budget. Consumers and
developers have to make compromises among the rendering
quality, image resolution, and frame rate [1].

Recent research on video supersampling has shown
that it is possible to reconstruct higher resolution videos
with realistic details using neural networks [2], [3]. This
has attracted attention in several communities, including
computer graphics [4], [5], where how to render high-
quality frames faster is a fundamental research topic. Neu-
ral supersampling methods for real-time rendering aim to
reduce the rendering cost while preserving image quality.
They first render frames at low-resolution (LR), which can
significantly reduce the shading computational overhead,
and then upscale the LR frames to high-resolution (HR)
through efficient neural networks. Prior works [4], [6], [7]
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Fig. 1. A high-level overview of our approach. In the preparation phase
(top), we collect paired low resolution and high resolution data to
train the neural supersampling network. After testing and performance
evaluation, the model parameters are quantized to 8-bit integers to
reduce computational costs. For the implementation on mobile devices,
the quantized model is loaded into the AI unit to increase the image
resolution during rendering.

have proven the feasibility of neural supersampling for real-
time rendering. These methods, however, are not suitable
for a wide range of hardware platforms because high per-
formance computing hardware is required. Deep learning
supersampling (DLSS) 2.0 [7] can reconstruct a 4K resolution
image in under 2ms using a lower resolution input, but
it can only be run on high-end GPUs with NVIDIA RTX
Tensor Cores. Neural supersampling for real-time rendering
(NSRR) [4] introduces a hardware-independent approach
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based on U-Net, which takes approximately 20ms to re-
construct a 1080p image on a GPU with NVIDIA TensorRT
optimization. However, it requires large memory resources
that incur high costs, and its speed is low because it requires
extensive computations.

Compared to prior work, neural supersampling for real-
time rendering applications on mobile devices is signifi-
cantly more challenging. First, using many input frames
like NSRR [4] is infeasible on mobile devices due to limited
memory. Further, when aiming for real-time applications,
the performance requirement is even stricter than PCs due
to mobile devices’ limiting computation budget. Naively
reducing the size of existing models to boost performance
will lead to severe quality deterioration.

To address the aforementioned challenges on mobile
devices, we propose an efficient mobile neural supersam-
pling framework (MNSS) capable of reconstructing high-
fidelity images at a target resolution while requiring much
lower computation cost than existing approaches. To reduce
memory cost, we recurrently reuse only one previous frame.
A sub-pixel sample pattern is applied to maximize sampling
efficiency and preserve details. The final result is obtained
by exploiting neural networks to appropriately blend the
history frame with the new samples of the current frame.
Fig. 1 illustrates the high-level overview of our method.
We first collect paired LR and HR video data to train the
neural supersampling network, and then we evaluate its
performance and quantize it via a post-training quantization
scheme [8]. For the inference phase on mobile phones, we
deploy the quantized supersampling model into the appli-
cations’ rendering pipelines. Many mobile system-on-chips
(SoCs) have embedded dedicated artificial intelligence (AI)
units in recent years, such as Qualcomm Hexagon digital
signal processors (DSPs) and MediaTek AI processing units
(APUs). These units are designed to perform fast matrix
computation while consuming little power. To that end, we
designed the neural supersampling network to run on these
low-power AI units.

In rendering, motion vectors capture the per-pixel
screen-space motion from one frame to the next. They
can be accurately calculated in modern renderers. Based
on the accurate motion information, we introduce a new
metric to quantitatively measure the temporal consistency
of rendered videos, called inter-frame structural similarity
(IF-SSIM). It uses the ground-truth motion vectors to align
the frames of the test videos, and then the temporal stability
is represented as the similarity between adjacent frames.
Besides, the ground-truth depth maps and a perceptual
difference threshold are used to eliminate inherent disoc-
clusions and shading changes among frames.

To our best knowledge, there is no public dataset for
rendering neural supersampling. Therefore, we build a new
dataset using Unity Engine [9]. Color images, depth maps,
and motion vectors are collected from three dynamic game
scenes. Based on this dataset, we are able to train and
test supersampling methods on real application scenarios,
including our approach, NSRR [4], and existing SR meth-
ods [2], [3], [10], [11]. We validate the superior performance
of our method by comparing it to the SOTA baseline and
SR approaches, extensive experiments demonstrate that our
method achieves better image quality and temporal stability

while requiring relatively less running time.
We summarize our main contributions as follows:

• An efficient neural supersampling framework op-
timized for real-time rendering, which can reach
nearly 90 FPS on a mobile device equipped with
an AI unit. To our best knowledge, this is the first
research in pushing rendering neural supersampling
on smartphones.

• A new metric, IF-SSIM, uses rendered motion vectors
to quantitatively evaluate videos’ temporal stability.

• A public dataset, GameVideo57, containing 57 ren-
dered videos and auxiliary buffers (a total of 73,000
frames).

The remainder of the paper is organized as follows. We
review the related work in Sec. 2. The proposed supersam-
pling framework, the temporal stability metric IF-SSIM, and
the dataset are respectively described in Sec. 3, 4, and 5. The
results and qualitative evaluations are presented in Sec. 6.
Finally, we conclude the paper in Sec. 7.

2 RELATED WORK

2.1 Real-Time Rendering
Antialiasing. Antialiasing is a fundamental problem in
computer graphics. In practice, real-time applications are
limited to a low sampling rate, typically one sample per
pixel, resulting in the undersampling problem [12]. Under-
sampling will cause artifacts such as jagged edges, spatial
noise, flickering, etc. Antialiasing techniques [13], [14], [15]
aims to remove such undersampling artifacts, which can be
naturally achieved by increasing the per-pixel sampling rate
using supersampling [16].
Temporal Supersampling. Temporal supersampling is
based on a simple observation. That is, most of the on-screen
content does not change between adjacent frames. One of
the most representative temporal supersampling techniques
is temporal antialiasing (TAA) [17], which is becoming
increasingly important for various real-time applications.
We refer readers to [18] for a comprehensive survey on
related temporal algorithms [19], [20], [21]. As temporal
supersampling often suffers from temporal artifacts (such
as flickering and blurriness) introduced by the heuristic
algorithms they used, researchers are trying to further im-
prove the result by using learning-based approaches. One
recent trend in leveraging temporal data is to reduce the
rendering cost by using learned supersampling methods.
Deep learning supersampling (DLSS) 2.0 [7], developed
by NVIDIA, has good performance and produces decent
quality results. However, their network structure and imple-
mentation details are not open to the public. Xiao et al. [4]
proposed a hardware-independent neural supersampling
method that uses a U-Net to reconstruct high resolution
frames. On a high-end GPU with NVIDIA TensorRT, it takes
about 20ms to generate one 1080p frame, which is relatively
slow for real-time rendering. Thomas et al. [22] present a
quantized model QW-Net for image reconstruction because
quantization techniques can significantly reduce both the
memory requirement and the computational overhead of
using neural networks. Most QW-Net computations, in par-
ticular, are implemented with 4-bit integers and accelerated
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Fig. 2. Overview of our proposed neural supersampling framework. The left shows the pipeline of the method, and the right shows the architecture
of sub-networks. For current Frame t, we first render the LR data Lt by adding a viewport sub-pixel offset to the camera. Then, the previous
reconstructed frame It−1

SS and its depth map Dt−1
L are loaded and reprojected to align to the current frame using the motion information Mt

L,
following which a weight map is generated by inpainting module to fill in invalid history pixels. After that, the current frame ItL and the repaired
history frame It−1 are fed into the blending network to generate HR output ItSS . In addition, the enhancement module can be optionally active by
the user to sharpen edges. Lastly, the reconstructed frame is pulled through the post-processing stage of the rendering pipeline.

using dedicated hardware. This network is used in a frame-
recurrent approach to improve image quality for real-time
rendering, which outperforms TAA. However, their method
is infeasible for the mobile platform because mobile devices
have far less computing power than PCs. Concurrent to our
work, AMD presents two non-machine-learning solutions,
FidelityFX super resolution (FSR) 1.0 [23] and 2.0 [24], which
utilize cutting-edge upscaling techniques to achieve high-
quality output.

2.2 Super-Resolution

Super-resolution (SR) aims at reconstructing high-resolution
(HR) output from low-resolution (LR) images or videos.
Since the pioneer’s work SRCNN [25], a lot of deep-
learning-based single image super-resolution (SISR) meth-
ods [2], [26], [27], [28] and Video super-resolution (VSR)
methods [2], [29], [30] have been proposed.
Single Image Super-Resolution. Increasing resolution
while recovering more details is the key to SISR [31].
In recent years, convolutional neural networks based ap-
proaches [25], [26], [32], [33] have dominated the research of
SISR and achieve high quality SR results due to their strong
feature extraction and representation capabilities. Most of
these methods are fully supervised. They usually obtain
paired LR-HR training data by degrading HR images to LR
images. Aside from fully supervised approaches, some work
[25], [26], [32], [33] adopt generative adversarial networks
to generate HR images. These methods can generate more
realistic results in real-world cases because of avoiding
manual image degradation [31].
Video Super-Resolution. VSR focuses on reconstructing
the HR frame from a series of adjacent LR frames. One

of the main differences among learning-based VSR meth-
ods is how to use the information of history frames [34].
Some approaches [3], [35], [36], [37] use alignment-based
algorithms to capture the information of adjacent frames,
where optical flows [38] and deformable convolution [39]
are the common practices. While some work [40], [41], [42]
exploit the temporal feature extraction power of RNNs.
They directly use the original LR images and share the
spatio-temporal information between neighboring images
to reconstruct HR frames. In particular, aiming at mobile
platforms, EVSRNet [11] presents a lightweight VSR model
that can be applied on mobile devices. It adopts neural ar-
chitecture search techniques to find the optimal VSR model.

2.3 Temporal Stability Assessment
Temporal stability is one of the most important factors in
video quality assessment. Ghosting, flickering, and alias-
ing artifacts are the common instability causes in ren-
dered videos. There have been some studies that take
into account temporal stability in video quality assess-
ment. The spatio-temporal reduced reference entropic dif-
ferences (STRRED) [43] and its variants utilize the wavelet
coefficients of frames to measure the differences between
the reference and the distorted videos. Learning-based ap-
proaches, such as VMAF [44], usually extract temporal and
spatial features and then calculate the quality score via
regression. Some works incorporate psychophysical studies
of the human visual system in video quality and temporal
stability assessment to evaluate the visual impact of spa-
tial and temporal distortions. To detect visible distortions,
contrast sensitivity function (CSF) [45] based models are
typically used. 3D CSF [46] and FovVideoVDP [47], for
example, use spatio-temporal CSF to determine perceptible
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Fig. 3. Conceptual illustration of Halton pattern, naive pixel-by-pixel
sampling pattern, and our sampling patterns. For ×2 upscaling, a 2× 2
pixel tile represents one pixel of LR images. (a) shows the Halton
sampling pattern and and the subpixel calculation process. Given the
samples (red points) of Frame t, the color of each subpixel is obtained by
bicubic interpolation of the surrounding samples, which would introduce
resampling blur. (b) shows the sampling process of a naive pixel-by-pixel
sampling pattern. When the object (the green triangle) is moving at the
speed of sampling positions, the temporal samples will overlap in some
places. Our alternate sub-pixel sampling patterns are shown in (c) and
(d). The samples of our pattern are moving at variable speeds in the
horizontal and vertical directions. It ensures the samples do not move
with any object in the 3D scene.

spatial and temporal frequencies. The distortion maps and
quality values can then be calculated using a psychometric
function or a contrast masking method. However, the above
methods do not decouple the image quality (i.e., similarity
to references) and the temporal stability of frame sequences,
because they still measure by calculating differences be-
tween the distorted video and its reference.

3 METHOD

3.1 Overview

Our main goal is to generate high-fidelity HR frames from
the low sampling rate rendered inputs for mobile real-
time rendering applications. To this end, we propose an
efficient mobile neural supersampling (MNSS) framework
that can integrate into the rendering pipeline of graphics
applications. It uses an alternate sub-pixel sample pattern
to improve the sampling efficiency and adopts a frame-
recurrent approach to recover fine image details.

Fig. 2 illustrates the pipeline of our method which cor-
responds to the neural supersampling network presented
in Fig. 1. For Frame t, the input of our model is LR data
Lt, including color image ItL, depth image Dt

L, and motion
vectors M t

L, rendered in tone-mapped space. We propose

an alternate sub-pixel sample pattern tailored for integral
upscaling factors (Sec. 3.2), that can significantly improve
the sampling efficiency. The input color images and depth
images are rendered with our proposed sub-pixel sample
pattern. For image reconstruction networks, we start with
a frame-recurrent approach [2], [48], that recurrently warps
and accumulates history frames. First, the history data It−1

SS

and Dt−1
L are loaded and reprojected to It−1

W and Dt−1
W to

align to the current frame using the motion information.
Then, a weight map generated in the inpainting module
is used to check and reject invalid pixels of the history
frame It−1

W , and pixels from the upsampled current frame
ItU are used to rectify and fill in the invalid history pixels.
Lastly, we design lightweight blending networks to perform
antialiasing and reconstruct HR frame ItSS using the current
LR frame ItL and the history HR frame It−1.

3.2 Sub-pixel Sampling Pattern

Despite some effective low-discrepancy sampling sequences
have been proposed and used in rendering sampling tasks,
such as Halton and Sobol sequences, they are not ideal
for our method. As shown in Fig. 3 (a), when HR images
are rendered at lower sampling rates using the Halton
pattern, severe resampling blur may occur due to the in-
terpolation operation. While naive pixel-by-pixel sampling
pattern may cause samples overlapping when objects and
sampling points are moving at the same speed (see Fig. 3
(b)). From a theoretical standpoint, a random sampling
pattern is feasible but not the best, due to the momentary
samples overlapping problem as Fig. 3 (b) may emerged in
some short random sequences.

To maximize sampling efficiency, we propose a new
sub-pixel sample pattern designed for integral upscaling
supersampling. We shade samples at the center of each
subpixel to avoid introducing resampling blur and use a
variable speed jittering pattern to deal with the overlapping
problem (where a subpixel refers to one pixel of each 2 × 2
or 3 × 3 pixel tile). For ×2 upscaling, the sampling pattern
is defined as the sampling order of 4 subpixels. Due to the
pixel tiles being connected to each other, regular sampling
patterns often cause biased results (blurry or aliased). Some
objects in the scene can easily move in sync with the sam-
pling points, which would cause the samples overlapping
problem. Therefore, we introduce a variable speed jittering
pattern to avoid these potential issues. Our method period-
ically adjusts the motion speeds of sampling points rather
than the sampling positions and uses different cycles in hor-
izontal and vertical to simulate complex motions. Fig. 3 (c)
gives a feasible trajectory follows the above rules, where the
horizontal and vertical speed cycles are {1, 0} and {1, 1, 0}
(in the unit of pixel widths per frame). Theoretically, other
speed cycles that follow the above rules are also practicable
to construct the sampling pattern.

Sampling patterns for ×3 upscaling supersampling are
similar. To evenly scan pixel tiles in shortest time, we design
a fine sampling pattern as shown in Fig. 3 (d) which cover
the 3 × 3 pixel tiles over every 9 frames. It is worth noting
that, to balance rendering time and image quality, ×2 or ×3
upscaling factor is sufficient for neural supersampling tasks.
For ×4 and above factors supersampling, the image quality
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Fig. 4. Intermediate images of our method.

is severely degraded but with limited performance gains.
We can adjust the performance by modifying the depth and
width of the blending network instead of using a lower
sampling rate.

The implementation of our method only requires few
engine code changes. In practice, sampling at sub-pixel
positions can be achieved by adding a jitter offset to the
camera projection matrix. Taking the sampling pattern of ×2
upscaling for example, we first set the rendering resolution
to half of the target resolution and adjust the mip-map level
bias of the texture to match the level of target resolution
images. Then, we add a jitter offset to the camera projection
matrix to render the first frame, and change the offset
according to the designed sampling pattern when rendering
the following frames. To evaluate the performance gains
from the proposed sub-pixel sampling pattern, we gives the
sampling efficiency comparisons in Sec. 6.4.

3.3 Reconstruction Framework
After finishing LR sub-pixel rendering, we adopt a frame-
recurrent based network to reconstruct high-fidelity HR
frames. As shown in Fig. 2, the reconstruction network
consists of history frame warping and inpainting, multi-
frame blending, and enhancement modules. We describe the
detailed structure of each module in this section.

3.3.1 Warping Module
We first project the supersampling result of the previous
frame to the current using backward warping with bilinear
interpolation. Warping operation allows for filtering history
pixels in a small receptive field to deal with a large motion
vector, which is also widely used in VSR methods [34]. To
obtain the motion information of objects between adjacent
frames, VSR methods usually use estimated optical flows,
while our method uses rendered motion vectors that can
be accurately calculated in modern renderers. Each element
of the motion vectors represents the image space offset
between the pixel’s current location and its location in the
previous frame. In Fig. 4 (b) and (c), we show an example
of the history and the warped history frame. The warped
history frame is obtained by:

It−1
W = fW (It−1

SS ,M t
U ), Dt−1

W = fW (Dt−1
U ,M t

U ), (1)

where fW (·) represents the backward warping operation,
It−1
SS is the supersampling result of the previous frame, and

Dt−1
U is the upsampled depth image of the previous frame,

M t
U is the upsampled motion vectors of the current frame.

3.3.2 Inpainting Module
The warped history frame It−1

W still cannot be directly used
in the blending network. Sudden changes in occlusion or
lighting will make some pixels invalid for reuse. Using
history samples without verification will lead to serious
ghosting artifacts [18]. In previous approaches, NSRR [4]
uses a weight map to adjust the values of history frame
features to reduce the impact of invalid history pixels. It
requires an extremely heavy neural network to generate the
weight map for each previous frame. Zeng et al. [49] propose
temporally reliable motion vectors that track the movement
of the disocclusion regions to address the ghosting issue.
But calculating the new motion vectors will involve a lot of
extra computation which is not friendly to mobile devices.

Inspired by the history samples accumulation process
in TAA algorithms [18], we propose an efficient inpainting
network to deal with the stale or invalid history pixels. As
shown in Fig. 2, the inputs of the inpainting module include
the current and previous color images and depth maps. We
first calculate a difference map between the current and
the previous color and depth frames. Because the current
frame is sampled at a low resolution, the difference map
is calculated using only the corresponding subpixels of the
previous frames It−1

W and Dt−1
W . Then a learned 3 × 3 con-

volution kernel with bias, a nonlinear activation function,
and an upsampling layer are used to rescale and project
the different map to the expected weight map Mw. For the
nonlinear activation function, the sigmoid or the tanh func-
tion (clipped to [0, 1]) that can provide a smooth transition
between the frames is suited for our method. After that the
weight map and the current frame are upsampled to the
target resolution to rectify invalid history pixels:

It−1 = Mw · ItU + (1−Mw) · It−1
W , (2)

where It−1 is the rectified history frame. Each pixel of the
weight map Mw represents the probability of the history
pixel for reusing. Fig 4 provides an example of the recti-
fication process. After training, the inpainting module can
generate effective weight maps to the invalid history pixels
with the current samples (see Fig. 4 (c), (d), and (e)).

Note that, for the upsampling process, to avoid spatial
offset introduced by our sampling pattern, we place the
pixels of LR images at the sampling positions of HR image
ItU . And other pixels of the HR image ItU are filled in by
bilinear interpolation.

3.3.3 Blending and Enhancement Module
We aim to use neural networks to blend current and pre-
vious frames to reconstruct high-quality images. Moreover,
the neural networks need to be deployed on mobile devices
and run in real time. Therefore, we design a lightweight
blending module comprised of an antialiasing and a recon-
struction network. Since our model works at an extremely
low sampling rate, the sampled LR frames often suffer
from spatial aliasing artifacts. To integrate antialiasing into
our model, we rectify the current frame samples using the
previous frame first. Given a rendered current frame ItL and
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its rectified previous HR frame It−1, It−1 first goes through
an average pooling layer that resizes the image to LR. Then
the pooled data and ItL are concatenated to generate anti-
aliased output ItAA by a low complexity neural network.
For the reconstruction network, we insert the pixels of the
anti-aliased LR frame ItAA into the rectified previous frame
It−1 according to the sampling positions. This combination
is fed to a wider and deeper neural network to construct
high-fidelity HR current frame ItSS , as shown in Fig. 2. The
numbers of input and output channels of the reconstruction
network are given in the figure.

Image enhancement algorithms can effectively improve
visual effects. Thus, our framework provides an optional
image enhancement module, which uses a sharpening al-
gorithm to make edges appear sufficiently pronounced to
improve image quality further. We apply the unsharp mask-
ing [50] to the reconstructed image ItSS using a sharpen filter

kernel

−β 0 −β
0 1 + (4× β) 0
−β 0 −β

 , where β is an adjustable

parameter. Larger β gives sharper images, and the recom-
mended value of β is 0.15.

3.4 Loss Function and Training Tricks
We use a combined loss function to train our networks,
which considers the structural and perceptual loss of HR
supersampling results and the per-pixel loss of LR anti-
aliased frames:

Loss = Lstruct + Lpercept + LAA, (3)

where 
Lstruct = 1− SSIM (ISS , IGT )
Lpercept = w · MSE (ϕ (ISS) , ϕ (IGT ))
LAA = k · mean(∥IAA − I ′GT ∥)),

ISS and IGT are the reconstructed image and the reference
image, IAA is LR anti-aliased images, I ′GT is an image com-
posed of sub-pixels that correspond to IAA. We adopt the
structural similarity (SSIM) with a window size of 11 × 11
in the loss function and following sections. Parameters k
and w are empirically set to 5 and 0.1, and ϕ(·) is the last
feature map of a deep network which is given by [51].

The training process of frame-recurrent based models
usually takes a lot of time. Because the poor performance
of each iteration can be transmitted along with the recurrent
iterative process, especially at the beginning of training. To
reduce the influence of this problem and accelerate network
training, we recommend readers to use a pre-training trick
that replaces the reused data It−1

SS with ground-truth image
It−1
GT in the first several epochs. In our studies, it can help

reduce the training time by hours while giving comparable
and even better results.

4 TEMPORAL STABILITY ASSESSMENT

In this section, we introduce a new video temporal stability
metric termed inter-frame structural similarity (IF-SSIM)
for rendered content. It evaluates the temporal stability by
the differences of aligned consecutive frames rather than
references. IF-SSIM takes a natural approach that checks the
consistency of the temporal pixels in consecutive frames. We

Frame t Warped Frame t-1

Disocclusions

Moving shades

Blurred image

(a) Aligned frames 

(b) Masked and resampled frames

Frame t Warped Frame t-1

Fig. 5. Comparisons of Frame t and the warped Frame t-1 using the
ground-truth motion vectors. (a) is the raw frames and (b) is the pro-
cessed frames in IF-SSIM evaluation.

obtain the flow of pixels by the renderer-generated motion
vectors, and then use SSIM to evaluate the pixel-level tem-
poral stability across frames. Although temporal pixels can
be accurately aligned using rendered motion vectors, there
are some critical issues that affect the evaluation of stability.
First, not all of the pixels have their counterparts in previous
frames, such as disoccluded pixels, as shown in Fig. 5 (a).
Second, the color of a pixel may changes with time, like
pixels on moving shades or non-Lambertian surfaces. Third,
the interpolation operation in temporal pixel warping is
equivalent to low-pass filtering, which can blur the warped
frames. To tackle the above issues, we formulate IF-SSIM
as masked inter-frame similarity based on human visual
perception.

Given two consecutive frames, we first reconstruct the
aligned two frames using a 2 × 2 pooling operation χ(·)
to counteract the effect of interpolating. Then, we need to
remove the inherently mismatching pixels. The pixels of
disoccluded regions can be easily found through depth tests.
For the shading changed pixels, we distinguish them by
comparing the max color variation of RGB channels with
a perceptual difference threshold [52], [53]. We formulate
the threshold as T = f(B,D), i.e., T only relates to the
brightness B and screen type of the displayer D. A user
experiment on different devices is conducted to determine
f(·). Fig. 5 (b) shows the results after processing, which can
be observed that the issues have been overcome. Lastly, the
IF-SSIM value of a video with n frames is expressed as:

IF-SSIM =

∑n
t=2 SSIM

(
χ(It−1

W )MdMp, χ(I
t)MdMp

)
n− 1

, (4)

where It is Frame t and It−1
W is warped Frame t-1, the

disoccluded mask Md and the perceptual shading changed
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Fig. 6. The probability P of choosing the right changed object under
different brightness and screens.

mask Mp are computed using the depth and color maps:

{
Md = { |△depth| < 0.01 }
Mp = {max(|△RGB|) < f(B, D) }.

Note that the frames It and It−1
W are from the test videos,

while the motion vectors and masks Md and Mp are from
the rendered ground-truth information.

To determine the perceptual difference threshold T =
f(B,D), we conduct a user experiment on the three game
scenes (see Sec. 5). 20 participants, 10 males and 10 fe-
males with normal vision, are shown some short videos
(60 frames) on the screens of PCs and mobile phones. We
change the color of some small objects several times in the
videos. Then the participants are asked whether they notice
shading changes or flickers. We compute the probability P
of choosing the right changed objects in the test. P of 75% is
referred to as 1 just-noticeable-difference (JND) unit [54].
The modified objects below 1 JND can be considered as
with no shading changes in human visual perception. After
the test, we calculate the average brightness B of the color
changed objects and their neighboring pixels (bounding
box) and then given the probability P of perceptual color
changes under different brightness B on a 27” LCD com-
puter display D1 and a 6.5” LCD mobile phone screen D2,
as shown in Fig. 6. The probabilities P rapidly increase
with the growth of RGB color changes. The results on
the two screens are approximate (difference less than 2 in
∆RGB). The curves of probability P reaching 1 JND, i.e.,
the threshold T = f(B,D), are given in the figure. We can
further obtain the relation between the threshold T and the
brightness B from the projected curve. For dark regions,
the color changes are more likely to be noticed, because the
human visual system is more sensitive to the differences
between darker tones [55]. The RGB color changes on the
right side of the curves are perceptible. In this paper, we
evaluate the temporal stability of videos using the threshold
Ti = f(Bi, D2) on the 6.5” LCD mobile phone screen D2

and using the average brightness of a 5×5 window of pixel
i as its brightness Bi.
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Fig. 7. Speed and performance comparison (NVIDIA 3090 GPU, Py-
Torch, and CUDA). Due to the lightweight design, our method can
reach nearly 90 FPS. Moreover, it outperforms state-of-the-arts with high
reconstruction quality.

5 DATASETS

We present a dataset called GameVideo57 for training and fair
comparisons of methods. It comprises 57 videos collected
from three scenes, each video consists of 1,000 or 2,000
continuous frames.
Preparation. We build three scenes in Unity Engine, which
represent three popular kinds of games, including multi-
player online battle arena (MOBA) games, first-person view
(FPV) games, and flight simulator (FS) games. To obtain the
real players’ data, three volunteers are employed to control
the main character, and we record the moving paths. Then,
19 paths are selected for each game scene. We randomly
choose 16 paths as the training set and the remaining 3
paths as the test set. After binding the camera to the main
character, we capture the data for each path.
Data Generation. We develop dataset generation scripts to
collect the training and test datasets using Unity Engine.
It is necessary to disable some post-processing effects (e.g.,
bloom, motion blur, depth of field, and fog) that will pro-
duce visual artifacts in the results. These post-processing
effects should be placed behind our method in the rendering
pipeline. For reference images, we render each frame at
resolution 2700×2700 with 8×MSAA and then downscale
it to 900×900 using 3×3 average pooling. For LR input,
we render input images at 300×300 for ×3 upscaling and
at 450×450 for ×2 upscaling. Color and depth images are
rendered with a jitter sequence in our method, as shown in
Fig. 3, while motion vectors are rendered without jittering
because motion vectors calculated at the center of pixel tiles
are more stable. We also enable MSAA and apply the mip
level bias approach where textures are sampled. The test
data is also rendered by the same settings to evaluate the
performances of different algorithms.

6 EXPERIMENTS

6.1 Experimental Settings

We evaluate our proposed method on GameVideo57 dataset
by three metrics: peak signal-to-noise ratio (PSNR), struc-
tural similarity (SSIM) [56], and inter-frame structural sim-
ilarity (IF-SSIM). PSNR and SSIM evaluate the similarity
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SSIM Scale Bicubic EDSR [10] FRVSR [2] SOF-VSR [3] EVSRNet [11] NSRR [4] Ours FRR-TAA

MOBA ×2 0.8501 0.8976 0.9182 0.9107 0.8825 0.9329 0.9457 0.9631×3 0.7592 0.8258 0.8783 0.8532 0.8346 0.9025 0.9103

FPV ×2 0.8537 0.8704 0.9014 0.8892 0.8751 0.9317 0.9381 0.9609×3 0.7755 0.8055 0.8798 0.8183 0.7921 0.8914 0.9023

FS ×2 0.8191 0.8396 0.8906 0.8451 0.8226 0.9012 0.9196 0.9553×3 0.7283 0.7607 0.8639 0.8051 0.7476 0.8736 0.8853

PSNR Scale Bicubic EDSR [10] FRVSR [2] SOF-VSR [3] EVSRNet [11] NSRR [4] Ours FRR-TAA

MOBA ×2 26.71 28.78 29.83 29.27 28.15 30.85 32.31 36.09×3 24.49 26.65 28.73 28.18 27.16 29.09 29.66

FPV ×2 25.85 26.91 28.72 26.40 27.52 31.41 32.10 35.71×3 23.89 24.32 26.10 25.65 24.33 28.64 29.17

FS ×2 25.34 26.03 28.41 26.93 26.34 30.21 31.16 34.23×3 23.20 24.44 26.53 24.97 24.06 27.52 28.36

TABLE 1
Quantitative evaluation of generated images’ quality on the three scenes for scale factor ×2 and ×3. The best performances (PSNR/SSIM) are

shown in bold. As a reference, FRR-TAA represents full resolution rendering with temporal antialiasing.

IF-SSIM Scale Bicubic EDSR [10] FRVSR [2] SOF-VSR [3] EVSRNet [11] NSRR [4] Ours FRR-TAA

MOBA ×2 0.9235 0.9465 0.9793 0.9627 0.9470 0.9832 0.9847 0.9912×3 0.9019 0.9204 0.9717 0.9585 0.9332 0.9814 0.9817

FPV ×2 0.8949 0.9079 0.9714 0.9613 0.9009 0.9825 0.9831 0.9905×3 0.8562 0.8717 0.9685 0.9550 0.8619 0.9807 0.9803

FS ×2 0.8941 0.9267 0.9713 0.9648 0.9341 0.9772 0.9802 0.9903×3 0.8671 0.8979 0.9651 0.9482 0.9179 0.9753 0.9789

TABLE 2
Quantitative evaluation of temporal stability of generated videos. The best performances (IF-SSIM) are shown in bold.

between the reconstructed images and the ground-truth
images, i.e., image quality. IF-SSIM evaluates the pixel-level
temporal stability among the generated frame sequences. In
addition, we also give the running times of each module
of our method on the personal computer and the mobile
devices and compare it with other approaches. During the
training phase, we use the LR videos as input data and
the supersampled HR videos as output data. Details of the
construction of the training and test datasets are addressed
in Sec. 5. The training batch size is set to 6 for 50 epochs, and
the test batch size is set to 1. For optimization, we use the
Adam optimizer by setting lr = 1e−3, betas = (0.9, 0.999),
and eps = 1e − 4. We present the results of ×2 and ×3
scaling approaches in Tabs. 1-2, respectively. Our experi-
mental platforms are a desktop PC with an NVIDIA GeForce
RTX 3090 GPU and two smartphones with Qualcomm Snap-
dragon 888 and 8 Gen1 SoCs.

6.2 Comparisons
We compare our method with other approaches, includ-
ing SISR method (EDSR [10]), VSR methods (FRVSR [2],
SOF-VSR [3], and EVSRNet [11]), and the SOTA baseline
NSRR [4]. We train and test all the methods on GameVideo57
dataset with the same procedure. NSRR and our method
take as input RGB images, depth images, and motion vec-
tors. Different from other methods, the input of our method
is rendered with alternate sub-pixel jittering sampling (see
Sec. 3.2). It is worth pointing out that motion vectors and
depth images are not used in SR methods, they usually

Device PC Smartphones–Snapdragon
(1080p) 888 (720p) 8 Gen1 (720p)

Warping 0.19 0.21 (GPU) 0.19 (GPU)
Inpainting 0.43 0.73 (GPU) 0.58 (GPU)

Blending 11.56 8.95 (DSP) 7.79 (DSP)
Enhancement 0.25 0.96 (GPU) 0.84 (GPU)

Total 12.43 (ms) 10.85 (ms) 9.40 (ms)

TABLE 3
Running times of our ×3 upscaling models on PC (NVIDIA 3090 GPU)

and smartphones (Qualcomm Snapdragon 888 and 8 Gen1 SoCs).

use time-consuming optical flow estimation algorithms to
obtain the motion information. To build a fair comparison
between SR and neural supersampling approaches, we re-
place the optical flow with the accurate renderer-generated
motion vectors for SR approaches.

Tab. 1 shows the comparisons of reconstructed image
quality, and Tab. 2 shows the comparisons of the tem-
poral stability of generated videos of different methods.
The PSNR/SSIM and IF-SSIM values are given at differ-
ent scenes and upscaling levels (×2 and ×3), where ×2
upscaling refers to shading 1 sample for each 4-pixels tile
(i.e., 25% shading budget), and ×3 refers to 11.1% shading
budget. We also give the quantitative evaluation of full
resolution rendered videos with temporal antialiasing (FRR-
TAA), i.e., 100% shading budget, as a reference. In general,
the reconstruction results of learning-based methods are
noticeably better than the bicubic interpolation method as
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Fig. 8. Visual comparison results on the MOBA, FPV, and FS scenes for scale factor ×3.

shown in Tabs. 1 and 2. Neural supersampling methods
(NSRR and ours) outperform SISR and VSR approaches
on both image quality (SSIM/PSNR) and temporal stability
(IF-SSIM). Also, experiment results show that our method
gives better results than the state-of-the-art supersampling
method NSRR. Compared to the results of FRR-TAA which
is rendered at the target resolution, our method achieves
close SSIM scores for the MOBA and the FPV scenes. The
gap between our method and FRR-TAA for the FS scene is
relatively wider, as this scene contains much high frequency
information. And we notice the superior temporal stability
performance of TAA method in Tab. 2, which can also verify
the effectiveness of the proposed metric IF-SSIM.

Fig. 8 shows visual comparisons of different methods
on the three game scenes. We can see that SR approaches
tend to produce smooth images that lack sufficient high-
frequency details. The image quality of our method and
NSRR are comparable, but our model is able to recover more
fine details and gives more visually pleasing results. We also
present a qualitative comparison of our method to two other
solutions commonly used in PCs, DLSS 2.0 [7] and FSR 2.0
[24]. It should be noted that our training datasets were col-
lected using the built-in render pipeline of the Unity Engine,
which is widely used in mobile graphics applications. Our
method relies on the forward shading features of Unity En-
gine’s built-in pipeline, whereas DLSS 2.0 is currently only
supported in Unity Engine’s HDRP (High Definition Render
Pipeline), and official support for FSR 2.0 in Unity has yet
to be provided. As a result, we compare the performance

of these three solutions qualitatively using results from
different rendering engines and scenes. As shown in Fig. 9,
the result of our method is rendered by the Unity Engine,
while the results of DLSS 2.0 and FSR 2.0 are rendered by
Unreal Engine 4, and all methods use a scaling factor of 2.
We can see that our method and DLSS 2.0 provide clearer
images with rich texture features for reconstruction image
quality, whereas FSR 2.0 results are slightly blurry. Ghosting
artifacts are barely visible in the results of DLSS and FSR
methods for the disoccluded regions in the red boxes, with
only a small blurry area appearing at the edge of moving
objects. With fast moving objects, our method produces very
slight ghosting, but it has little effect on video quality and
temporal stability. We recommend that readers watch the
demo video and compare the comparisons.

6.3 Model Performance Analysis
Real-time rendering applications usually run at more than
60 FPS, which poses a major challenge to the upscaling
algorithms. In this section, we discuss the required com-
puting resources and performances of the alternative super
resolution and supersampling methods. As shown in Fig. 7,
we give comparisons of parameters, running times, and
performance on a personal computer. It is obvious that
our method outperforms almost all baseline methods. Our
model uses fewer running times and parameters while pro-
ducing the best quality images. The video super resolution
algorithm EVSRNet [11] is capable of working at high frame
rates, but its reconstructed image quality is lower than that
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Fig. 9. Visual comparisons of our method, DLSS 2.0 [7], and FSR
2.0 [24] for scale factor ×2. The images in blue boxes compare different
texture reconstruction methods, whereas the images in red boxes com-
pare reconstructions on disoccluded regions.

of other methods. Despite the time-consuming optical flow
estimation networks of SR methods being replaced by free
rendered motion vectors (as mentioned in Sec. 6.2), our
method still achieves the best image quality at a high frame
rate (reaching nearly 1080p & 90 FPS on NVIDIA GPU).

We then evaluate the performance of our model on the
mobile devices. As discussed in Sec. 1 and Fig. 1, the neural
supersampling model is trained on the collected rendered
datasets on high performance computers before being de-
ployed on mobile devices. The training is usually conducted
using 32-bit floating-point arithmetic which allows for a
large range of matrix operations. However, the trained 32-bit
floating-point models are not well suited for use on mobile
devices due to the expensive floating-point arithmetic. To
reduce the model inference time and memory usage, we
optimize our model using a post-training model quanti-
zation scheme [8]. It can quantize the 32-bit floating-point
parameters of the trained network as 8-bit integers, which
makes it applicable to run our model on mobile neural
network accelerator hardware such as Qualcomm Hexagon
digital signal processors (DSP). We run performance tests on
smartphones powered by Qualcomm Snapdragon 888 and
8 Gen1 SoCs, respectively. The most computationally inten-
sive model, the quantized reconstruction network, is loaded
into the DSP units of the SoCs, while other simple modules,
such as warping, inpainting, antialiasing, and enhancement
networks, are performed on the GPU. Tab. 3 displays the
test results. On smartphones, our model takes 10.85 and
9.40 milliseconds, respectively, with GPU processes taking
1.9 and 1.61 milliseconds and reconstruction taking 8.95 and
7.79 milliseconds. In theory, our model can achieve up to
90 FPS when the GPU and DSP work in tandem (when
regardless of the memory copy cost, a discussion about this

(a) Reference images (b) NSRR (c) Ours

1 2 3 4 5 5+

Fig. 10. Visual comparisons of the supersampling efficiency for ×3 up-
scaling. For the given two images as shown in (a), where the character is
moving fast in the top image, and stopped and is attacking in the bottom
image. (b) and (c) are the visualized results of NSRR and our method.
The colored pixels in (b) and (c) represent the numbers of sampled sub-
pixels in 9 from temporal 5 frames. More sub-pixels sampled means
higher supersampling efficiency.
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Fig. 11. The statistics of sampled sub-pixels of NSRR and our method
on the test data for scale factor ×3.

is placed in Sec. 6.6).
Adding the supersampling model to real-time rendering

applications has little impact on the rendering performance
on GPUs, since we perform most of the computations of our
model on the low-power DSP units. In addition, the infer-
ence time and energy budget of our model will not change
with the complexity of the rendering pipeline and 3D scenes.
Therefore, using the supersampling model can achieve more
benefits (i.e., reducing the shading computational overhead
while maintaining image quality) for complex scenarios.

6.4 Sampling Efficiency Analysis
In this section, we compare the sampling efficiency of the
SOTA baseline NSRR [4], random subpixel sampling, and
our sampling pattern. Based on the same temporal samples
reusing approach, sampled sub-pixels of the previous 4
frames of NSRR and our method are warped to align with
the current frame. Then we count the sampled sub-pixels of
each pixel of LR images to show the sampling efficiency of
different methods. More sampled sub-pixels means higher
sampling efficiency and more image details can be recov-
ered. Fig. 10 and 11 give the comparisons of sampled sub-
pixels (up to 9 for ×3 upscaling) of the methods on the
test data. As shown in Fig. 10, given a fast-moving scene
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Method SSIM PSNR IF-SSIM
NSRR-Small 0.8631 27.57 0.9562

Ours 0.9103 29.66 0.9817
NSRR 0.9025 29.09 0.9814

Ours-Large 0.9197 29.74 0.9868

TABLE 4
Cross-validation experiment experiments for the reconstruction

networks on the MOBA scene with scale factor ×3. “NSRR-Small” and
“Ours” adopt the proposed lightweight reconstruction network, while

“NSRR” and “Ours-Large” adopt a heavy network used in [4]

Method SSIM PSNR IF-SSIM
Center sampling 0.8816 28.09 0.9829

Random sampling 0.9033 29.11 0.9761
Ours 0.9103 29.66 0.9817

TABLE 5
Ablation experiments for jittering samples and the alignment module.
We train our model with the different sampling settings (with “center”,

“random”, and our sampling pattern) and report the results on the
MOBA scene with scale factor ×3.

(first row), NSRR gathers 3 sub-pixels (in green) for most
pixels from 5 temporal frames, while our method gathers 3
to 5 sub-pixels (in green, orange, and orange-red). Given a
static scene (second row), NSRR only gathers 1 sub-pixel (in
blue) from 5 temporal frames, while our method gathers
5 sub-pixels (in orange-red). The illustrations in Fig. 10
are consistent with the results in Fig. 11. Our method can
obtain 3 to 5 temporal sub-pixels for most pixels. NSRR
only gathers 1 or 3 sampled sub-pixels for most pixels.
Because much temporal samples are wasted (overlapped)
at the same place, which limits its sampling efficiency.

In addition, we execute a cross-validation experiment
that swaps the reconstruction networks of NSRR and our
method to verify the above analysis. As shown in Tab. 4,
we replace the reconstruction network of NSRR with our
lightweight network (NSRR Small) and adopt the recon-
struction network of NSRR in our method (Ours-Large).
Under the same network parameters, our supersampling
framework gives better results with 0.0472, 2.09 dB, and
0.0255 improvements on SSIM, PSNR, and IF-SSIM for
the light reconstruction network and 0.0172, 0.65 dB, and
0.0054 improvements for the large network compared to
NSRR. The supersampling results NSRR relies on heavy
reconstruction networks, which is not friendly to limited
hardware, while our approach can generate stable results
with lightweight neural networks.

6.5 Ablation Studies
Jittering Samples. In Sec. 3.2 we propose to use a new
sample pattern for the pixel shading process. Tab. 5 shows
an ablation study on the effectiveness of different sampling
patterns. To effectively collect temporal samples, we apply
sub-pixel jitter to the input image to produce uniformly dis-
tributed sub-pixel samples. By performing jittering sample
pattern, the output image quality is significantly improved
from SSIM 0.8816 to 0.9103 and PSNR 28.09 to 29.66 dB.

Method SSIM PSNR IF-SSIM

Single frame 0.8463 27.56 0.9412

Reuse It−1
L 0.8625 28.28 0.9584

Reuse It−1
SS (Ours) 0.9103 29.66 0.9817

TABLE 6
Ablation experiments for recurrently reusing a history frame. We train
our model with the settings corresponding to the first column in the

table and report the results on the MOBA scene with scale factor ×3.

(a) History frame (b) Input (c) Ours (d) Reference

Fig. 12. A failure case. When the camera moves fast to the left, there
will be noticeable artifacts on the left edge of the result, and the error
will stay for several frames.

Our sampling pattern also achieves better results compared
to random sampling. Note that, the IF-SSIM with a jittering
sampling pattern is slightly lower than the baseline of center
sampling, caused by the small inconsistency introduced
by the jittered samples between consecutive frames, which
leads to slightly worse temporal stability. However, this
is a reasonable compromise given the 0.0287 and 1.57 dB
improvement on SSIM and PSNR at the cost of merely
0.0012 degradation on IF-SSIM.
Reuse History Frame. Tab. 6 shows the results of three
strategies. As the single-frame approach cannot leverage
temporal information, its overall performance is unsurpris-
ingly the worst. Next, reusing the previous frame which
does not carry network-generated information cannot make
full use of temporal samples efficiently. Therefore, the ap-
proach of reusing It−1

L results in image quality and temporal
stability degradation. Finally, our full model achieves the
best results with 0.0640, 2.10 dB, and 0.0450 improvements
on SSIM, PSNR, and IF-SSIM respectively.

6.6 Limitations and Future Work

Our method has some limitations. First, our method de-
pends on the quality of the history frame. When signifi-
cant changes happen, the history frame may not contain
sufficient information. In this case, errors will arise (Fig. 12),
but they can be repaired by the following samples quickly.
Second, although our method outperforms SOTAs in run-
time performance, it can still be demanding for lightweight
hardware such as low-end smartphones. We believe that
with the architectural upgrades of mobile SoCs and more
powerful AI units embedded, the speed can be greatly
accelerated, and the power consumption can be notably
reduced. Third, AI units typically have their own memory
subsystem, and when offloading real-time tasks from the
GPU to the AI unit, the cost of memory transfer cannot be
overlooked. Despite the fact that we use ION buffers [57] to
map memory from the GPU to the AI unit and the FastRPC
protocol [58] to facilitate remote procedure calls between the
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CPU and AI unit, the memory transfer process on the test
SoC still takes about 0.8∼3ms, resulting in a small additional
latency.

Our method can be improved in the following directions.
(1) Our supersampling framework is naturally applicable
to checkerboard rendering and variable rate shading. If the
hardware supports these new techniques, integrating the
neural supersampling model into the rendering pipeline
can produce better quality images. (2) And we are also
interested in exploiting more auxiliary parameters available
in modern renderers such as object ID to recover the edges
of objects better.

7 CONCLUSION

Given the success of neural supersampling for real-time
rendering on high-end computers, we present an efficient
neural supersampling framework for real-time rendering
applications on smartphones. To maximize the sampling
efficiency, we propose a sub-pixel sample pattern to gather
more spatio-temporal information at the limited sampling
rates. To deal with the challenges of computation constraints
on the mobile platform, our method uses an efficient in-
painting module to rectify invalid history pixels and adopts
lightweight networks and quantization techniques to re-
duce the computational cost of reconstruction networks. It
achieves high image reconstruction quality while keeping
temporal stability by using a recurrent-frame approach.
We also demonstrate the superior runtime performance of
our method. To our best knowledge, we present the first
real-time neural supersampling method on smartphones,
which may benefit various real-time applications. We test
our model on a moderate mobile platform, and the perfor-
mance reaches up to 90 FPS for 720p images. Finally, we
introduce a new metric termed IF-SSIM to measure pixel-
level temporal stability quantitatively, and a new dataset
called GameVideo57 to the lack of data for future research.
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